SmartCoping: A mobile solution for recognizing and preventing stress

Edith Maier
Ulrich Reimer
Emanuele Laurenzi

University of Applied Sciences St. Gallen

Project partner

University of Applied Sciences St. Gallen
University of Applied Sciences Zurich
Forel Clinic
myVitali
ai-one

Funded by CTI

www.smartcoping.net
Agenda

1. Starting point and motivation
2. Mobile stress warning based on vital data
3. Adding context data
4. Biofeedback
5. Summary and outlook

Stress is a societal problem

- Chronic stress is wide spread
- Associated diseases: burnout, depression, addiction
 - high health costs
 - high economic costs (absenteeism, early retirement etc.)

Support for treatment and prevention of stress
 - Patient self-management
Objectives of SmartCoping

Developing a smartphone app:

a) Warning when stress increases
b) Analysis: Which situations frequently show high stress level?
c) Relieving stress by means of Biofeedback
d) Validation of its effectiveness via medical field tests with the Forel Clinic

Agenda

1. Starting point and motivation
2. Mobile stress warning based on vital data
3. Adding context data
4. Biofeedback
5. Summary and outlook
Physiological stress indicators

- Increasing cortisol level
- Decreasing HRV
- Increasing heart rate
- Increasing skin conductance

HRV: Heart Rate Variability

- HRV is the *variation* of time intervals between two heartbeats.
- HRV is affected by the interplay between the sympathetic and parasympathetic nervous system.

In stress conditions HRV decreases!
HRV Measurements

- Body Sensor
- Transmission of heartbeats to smartphone
- Determine the variability of heart rate in 4-minute intervals

Various calculations for HRV:

- SDNN: standard deviation of RR intervals in the current time frame;
- RMSSD: root mean square difference of successive RR intervals in the time frame
- PNN50: percentage of pairs of adjacent RR intervals differing by more than 50 ms in a time frame (Bilchick and Berger, 2006)
- LF and HF: low and high frequency spectral powers
- LF/HF: balance between sympathetic and parasympathetic nervous system.
Problem: There is no general HRV threshold

HRV differs from person to person
Therefore, we cannot set any general threshold.

Solution:
The app adapts to individual user

→SmartCoping goes far beyond existing approaches

Application Scenario: With vital data only

How does the app know which patterns show stress?
User adaption: Learning Phase

HRV → Heart rate → Stress Recognition Patterns

User feedback on stress level

Application Scenario: Stress warning recognition

HRV → Heart rate → Stress Recognition Patterns → Stress Warning
Learning task: Learning a classifier for stress level

Classification attribute:
- Stress level = «high», «medium», «low»

Input attributes with respect to HRV:
- Lowest HRV within the time window
- Difference between the highest HRV value among all and the lowest HRV value within the time window
- Difference between the highest and the lowest HRV value within the time window

Input attributes with respect to heart rate:
- Highest HR within the time window
- Difference between the highest HR value among all and the lowest HR value within the time window
- Difference between the highest and lowest HR within the time window
Learning task: Time window

\[\text{Feedback} \]

Learning from stress detection patterns: First results

- Decision Tree Algorithms (See5, YaDT)
- 100 Tuples – 2/3 as training data, 1/3 as test data
- Error rate on test data < 10%
Example of a learned decision tree…
(YaDT)

...error rate broken down by classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td>22</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Classified</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
</tbody>
</table>
Learning from stress detection patterns: Further steps

- How does the error rate **change** with more input data?
- How much do the **learning results** and **error rate** depend on the **input data**?
- Using other learning algorithms (support vector machine)

Problem: Good input data for fast learning

Objective:
Gathering feedbacks frequently

Solution:
The app automatically prompts the user to give feedback

Objective:
Gathering feedbacks in «interesting» situations

Solution:
Active Learning Principles – Generation of feedback prompts for major changes, extreme values, etc.
Agenda

1. Starting point and motivation
2. Mobile stress warning based on vital data
3. Adding context data
4. Biofeedback
5. Summary and outlook

Adding context data

Problems:
• «Positive» Stress – No Warning!
• Artefacts (especially from movements)

Solution:
Adding context data!

Additional features:
• Exact detection of stress patterns
• Analyze in which conditions stress is frequently high
Application scenario with context data

- HRV
- Heart rate
- Physical activity
- Daytime
- Location
- Relocation
- User feedback on stress level

Personalized stress warning with context data

- HRV
- Heart rate
- Physical activity
- Daytime
- Location
- Relocation

Stress Recognition Patterns

Stress Warning
History analysis

- Trend of stress levels (Hours, Day, Week, Month, Years)
- Analysis: Which situations frequently show high stress level?

Agenda

1. Starting point and motivation
2. Mobile stress warning based on vital data
3. Adding context data
4. Biofeedback
5. Summary and outlook
Stress reduction with biofeedback

Studies have shown the impact of biofeedback on HRV

Agenda

1. Starting point and motivation
2. Mobile stress warning based on vital data
3. Adding context data
4. Biofeedback
5. Summary and outlook
Summary

Innovation in the following aspects:

• **User adaptation:**
 Learning from individual stress recognition patterns

• **Interpretation of vital data within context**

• **Medical and therapeutic efficacy:**
 Field study with Forel Clinic

Outlook

Challenges still to be solved:

• **Artefacts:**
 Possible solutions:
 - Combine with context data
 - Better sensors (not too expensive)

• **Active learning:**
 Algorithm for monitoring the HRV data and generating feedback prompts for those “interesting” situations

• **Learning from reliable stress detection patterns:**
 Finding out the most suitable learning approach
 (Algorithms, Input)